Publications
2007 |
Weber, Alexander N R; Gangloff, Monique; Moncrieffe, Martin C; Hyvert, Yann; Imler, Jean-Luc; Gay, Nicholas J Role of the Spatzle Pro-domain in the generation of an active toll receptor ligand Article de journal The Journal of Biological Chemistry, 282 (18), p. 13522–13531, 2007, ISSN: 0021-9258. Résumé | Liens | BibTeX | Étiquettes: Animals, Cytokines, dimerization, imler, ligands, M3i, Post-Translational, Protein Binding, Protein Processing, Protein Structure, Signal Transduction, Tertiary, Toll-Like Receptors @article{weber_role_2007, title = {Role of the Spatzle Pro-domain in the generation of an active toll receptor ligand}, author = {Alexander N R Weber and Monique Gangloff and Martin C Moncrieffe and Yann Hyvert and Jean-Luc Imler and Nicholas J Gay}, doi = {10.1074/jbc.M700068200}, issn = {0021-9258}, year = {2007}, date = {2007-05-01}, journal = {The Journal of Biological Chemistry}, volume = {282}, number = {18}, pages = {13522--13531}, abstract = {The cytokine Spätzle is the ligand for Drosophila Toll, the prototype of an important family of membrane receptors that function in embryonic patterning and innate immunity. A dimeric precursor of Spätzle is processed by an endoprotease to produce a form (C-106) that cross-links Toll receptor ectodomains and establishes signaling. Here we show that before processing the pro-domain of Spätzle is required for correct biosynthesis and secretion. We mapped two loss-of-function mutations of Spätzle to a discrete site in the pro-domain and showed that the phenotype arises because of a defect in biosynthesis rather than signaling. We also report that the pro-domain and C-106 remain associated after cleavage and that this processed complex signals with the same characteristics as the C-terminal fragment. These results suggest that before activation the determinants on C-106 that bind specifically to Toll are sequestered by the pro-domain and that proteolytic processing causes conformational rearrangements that expose these determinants and enables binding to Toll. Furthermore, we show that the pro-domain is released when the Toll extracellular domain binds to the complex, a finding that has implications for the generation of a signaling-competent Toll dimer.}, keywords = {Animals, Cytokines, dimerization, imler, ligands, M3i, Post-Translational, Protein Binding, Protein Processing, Protein Structure, Signal Transduction, Tertiary, Toll-Like Receptors}, pubstate = {published}, tppubtype = {article} } The cytokine Spätzle is the ligand for Drosophila Toll, the prototype of an important family of membrane receptors that function in embryonic patterning and innate immunity. A dimeric precursor of Spätzle is processed by an endoprotease to produce a form (C-106) that cross-links Toll receptor ectodomains and establishes signaling. Here we show that before processing the pro-domain of Spätzle is required for correct biosynthesis and secretion. We mapped two loss-of-function mutations of Spätzle to a discrete site in the pro-domain and showed that the phenotype arises because of a defect in biosynthesis rather than signaling. We also report that the pro-domain and C-106 remain associated after cleavage and that this processed complex signals with the same characteristics as the C-terminal fragment. These results suggest that before activation the determinants on C-106 that bind specifically to Toll are sequestered by the pro-domain and that proteolytic processing causes conformational rearrangements that expose these determinants and enables binding to Toll. Furthermore, we show that the pro-domain is released when the Toll extracellular domain binds to the complex, a finding that has implications for the generation of a signaling-competent Toll dimer. |
2000 |
Imler, Jean-Luc; Hoffmann, Jules A Toll and Toll-like proteins: an ancient family of receptors signaling infection Article de journal Reviews in Immunogenetics, 2 (3), p. 294–304, 2000, ISSN: 1398-1714. Résumé | BibTeX | Étiquettes: Adaptor Proteins, Animals, Antigens, Autoantigens, CD14, Cell Adhesion Molecules, Cell Surface, Differentiation, DNA-Binding Proteins, Gene Expression Regulation, hoffmann, I-kappa B Proteins, imler, Immunity, Immunologic, infection, Innate, Insect Proteins, Interleukin-1 Receptor-Associated Kinases, Knockout, Larva, Lipopolysaccharides, M3i, Mammals, MAP Kinase Signaling System, Membrane Glycoproteins, Membrane Proteins, Mice, Multigene Family, Myeloid Differentiation Factor 88, NF-kappa B, peptidoglycan, Phosphorylation, Post-Translational, Protein Kinases, Protein Processing, Protein Structure, Receptors, Recombinant Fusion Proteins, Signal Transducing, Signal Transduction, Teichoic Acids, Tertiary, Toll-Like Receptor 4, Toll-Like Receptor 5, Toll-Like Receptor 6, Toll-Like Receptor 9, Toll-Like Receptors, Ubiquitins @article{imler_toll_2000, title = {Toll and Toll-like proteins: an ancient family of receptors signaling infection}, author = {Jean-Luc Imler and Jules A Hoffmann}, issn = {1398-1714}, year = {2000}, date = {2000-01-01}, journal = {Reviews in Immunogenetics}, volume = {2}, number = {3}, pages = {294--304}, abstract = {Innate immunity is the first-line host defense of multicellular organisms that rapidly operates to limit infection upon exposure to microbes. It involves intracellular signaling pathways in the fruit-fly Drosophila and in mammals that show striking similarities. Recent genetic and biochemical data have revealed, in particular, that proteins of the Toll family play a critical role in the immediate response to infection. We review here the recent developments on the structural and functional characterization of this evolutionary ancient and important family of proteins, which can function as cytokine receptors (Toll in Drosophila) or pattern recognition receptors (TLR4 in mammals) and activate similar, albeit non identical signal transduction pathways, in flies and mammals.}, keywords = {Adaptor Proteins, Animals, Antigens, Autoantigens, CD14, Cell Adhesion Molecules, Cell Surface, Differentiation, DNA-Binding Proteins, Gene Expression Regulation, hoffmann, I-kappa B Proteins, imler, Immunity, Immunologic, infection, Innate, Insect Proteins, Interleukin-1 Receptor-Associated Kinases, Knockout, Larva, Lipopolysaccharides, M3i, Mammals, MAP Kinase Signaling System, Membrane Glycoproteins, Membrane Proteins, Mice, Multigene Family, Myeloid Differentiation Factor 88, NF-kappa B, peptidoglycan, Phosphorylation, Post-Translational, Protein Kinases, Protein Processing, Protein Structure, Receptors, Recombinant Fusion Proteins, Signal Transducing, Signal Transduction, Teichoic Acids, Tertiary, Toll-Like Receptor 4, Toll-Like Receptor 5, Toll-Like Receptor 6, Toll-Like Receptor 9, Toll-Like Receptors, Ubiquitins}, pubstate = {published}, tppubtype = {article} } Innate immunity is the first-line host defense of multicellular organisms that rapidly operates to limit infection upon exposure to microbes. It involves intracellular signaling pathways in the fruit-fly Drosophila and in mammals that show striking similarities. Recent genetic and biochemical data have revealed, in particular, that proteins of the Toll family play a critical role in the immediate response to infection. We review here the recent developments on the structural and functional characterization of this evolutionary ancient and important family of proteins, which can function as cytokine receptors (Toll in Drosophila) or pattern recognition receptors (TLR4 in mammals) and activate similar, albeit non identical signal transduction pathways, in flies and mammals. |